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ABSTRACT 

This report comprises two memoranda,   each with its own abstract.    The 

reader is referred to these. 

PREFATORY NOTE 

In the course of research under this contract on methods for more efficiently 

utilizing antennas in fading radio communications,   such as typified by tropospheric 

scatter,   it was desired for comparison purposes to carry out detailed performance 

estimates for angle diversity systems.     Such systems have been proposed on the 

basis of experimental observations that the apparent angle of arrival of such fading 

signals tends to wander over several beamwidths at the receiving point; it then 

appears economical in equipment to consider a diversity system based on the use 

of a single large reflector with a number of feeds arranged to produce squinted beams. 

Each feed is connected in such a system to a separate receiver,   and the outputs of 

the receivers are combined in the appropriate diversity combining circuitry,   for 

example,   so-called maximal-ratio combining. 

A number of analyses of angle diversity have been reported to date. '        ' 

1. S.   Stein,   D.E.   Johansen,   and A. W.   Starr,   ''Theory of Antenna Performance in 
Scatter-Type Reception".   Hermes Electronics Co.  Report M783,   AFCRC-TR-59- 
191,   30 Sept.   1959 (Appendix F). 

2. A.B.   Crawford,   D. C.   Hogg,   and W.H.   Kummer,   "Studies in Tropospheric 
Propagation Beyond the Horizon",   BSTJ,   38,   pp.   1067-1178 (1959). 

3. J. H.   Vogelman,   J. L.   Ryerson,   and M. H.   Bickelhaupt,   "Tropospheric Scatter 
System Using Angle Diversity",   Proc.   IRE,   47_,  pp.   688-696 (1959). 

4. R. Bolgiano, Jr., N. H. Bryant, and W. E. Gordon, "Diversity Reception in 
Scatter Communications with Emphasis on Angle Diversity", Cornell Univ., 
Final Report,   Parti,   on AF30(602)-17 17,   Jan.   1958.. 

5. C.   Chu,   A. H.     Wren,   and J.   LaRue,   "Evaluation of the Pincushion System", 
Univ.   Mich.  Rad.   Lab.  Rept.   2872-1-T,   RADC-TN-60-50,   Feb.   I960. 

6. W. R.   Richard and M. H.   Bickelhaupt,    "Multiple Angle Diversity Design 
Considerations".   Rome Air Development Center,   RADC-TN-60-22,   April   I960. 
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Problems which are discussed in this scientific report were first noted in an 

earlier analysis       where it was disturbing to find that casual angle diversity 

calculations led to results which were obviously inconsistent with conservation 

of energy.    The same type of mathematics appears,   or seems to be implied,   in all 

the other discussions of angle diversity. '   The problem which arises is the 

following:   The "casual diversity calculation",   referred to above,   is one which 

assumes that each of the various beams of the receiving array collects energy 

from the incident field,   essentially independently of the presence of the other 

beams.     That is,   one calculates the received power in each beam from a knowledge 

of the incident field,   or equivalently of the sources creating the field,   by applying 

the reciprocity theorem with the radiation pattern of each beam only,   assuming 

that there are no interaction effects due to the presence of the other beams which 

would diminish the estimate of received power.    The basis for this assumption is 

that the beams do not greatly overlap.    However,   although for reasons of physical 

construction,   standard multiple feed microwave antenna systems usually cannot 

produce beams which cross over at levels higher than about their 3 db points,   it is 

not at all clear that with some ingenuity useful beams could not be designed which 

would overlap even more greatly.    Surprisingly,  the analysis in this report indicates 

that even for beams crossing over at their 3 db points the modifications indicated by 

the analysis can be quite significant. 

Of course,   somewhat paradoxically,   all the angle diversity analyses have 

shown an awareness of the need for taking account of beam overlap insofar as 

estimating the degree of correlation of the fluctuations in the energies received 

on the various beams,   in the case of fading propagation channels typified by 

tropospheric transhorizon ("scatter") systems.    However,   the issue to be discussed 

in this report is,   in fact,   quite separate from the fluctuating or nonfluctuating 

nature of the incident field.    It is rather a statement of inherent limitation in the 

character of the multiple beam antenna systems,   due to the necessity of the 

conservation of energy principle.    In short,   the relations to be described here 

refer to a limitation on the energy which can be collected at each instant by the 

antenna system in a fading environment,   and do not refer at all to time fluctuations 

of such collected energy. 

The nature of the problem under discussion becomes obvious by considering 

as an example the extreme limiting case of completely overlapping beams.    For 

example,   yuppose one has an antenna system with one feed,  but chooses to put M 

ill 
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different taps on the feedlme at various points along the circuit.     Looking at 

everything between those taps and the radiation patterns as a "black box antenna 

system",  which one is  certainly free to do (if only to be different),   gives an antenna 

system with M "feed-lines" entering the  ''black box",   each exciting a perfectly good 

radiation pattern when excited,  with all the other taps terminated in matched loads 

(which is,   indeed,   how one defines the beam patterns in any multiple beam system). 

Thus,  we would observe that our black box is a multiple-beam antenna system which 

has M identical,   completely overlapping beams.    It is certainly clear on the one hand 

that one cannot buy something for nothing,   that in reality there exists only the one 

radiation pattern; that if m receiving,   the outputs of the taps are combined in an 

optimum linear combining network,   the net results will at best be the same as if one 

had initially adopted the  more conventional attitude that there exists only the one 

feed,   and therefore,   only one real beam collecting energy and one terminal point. 

In fact,   of course,   if one excites one of the taps in our example,   some fraction of 

the energy will disappear into the loads associated with the other taps and only the 

remaining fraction into the radiated beam.    In other words,   the presence of these 

other taps,   or alternatively the fact that the beams overlap as much as they do, 

creates an insertion loss between each tap and its associated beam.    It is this 

insertion loss,   which appears in reception as well as in transmission,  which is 

inherent in the principle of conservation of energy,   and for which we seek a 

characterization. 

In the extreme example just cited,   the problem was obvious and the correction 

factors equally obvious.     The challenge which appeared,   however,   since we wanted 

to analyze angle diversity configurations in which the beams crossed over at varying 

squint angles,   and hence with varying degrees of overlap,  was to produce a 

mathematical formulation and description of such a system which will automatically 

and routinely account  correctly for these limitations.    Such a formulation would then 

be completely dependable for performance predictions for angle diversity systems, 

regardless of how peculiar the feeding system (or the way in which the inventor 

chooses to regard the   system). 

However,   this  mathematical formulation appeared possibly to be of much more 

general significance to designers of multiple beam antenna systems.    For this reason, 

while the analysis performed under this conr.rr.ct achieved its goal once a formulation 

giving the correct results for angle diversity had been achieved,   it seemed desirable 

to further explore these results in the more general context.    Although this further 

iv 
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exploration was carried out external to the contract,   for the sake of completeness 

the entire contents are being reported in this scientific report,  with reference to 

the more general context. 

This scientific report consists of two engineering memoranda which are 

entitled: 

Part I:   Radiation Efficiencies (with Application to Angle Diversity) 

Part II:   Characteristics of the Cross-Coupling Matrices 

The contents of each are perhaps obvious from the titles.    It is our belief,   as 

stated already,   that a significant new insight has been obtained through this work 

into many of the problems of designing multiple beam antenna systems.    Never- 

theless,   as will be apparent after reading this report,   much further useful work 

remains to be done if the full significance of these results is to be obtained with 

respect to particular system applications.    These conclusions are reiterated 

perhaps more meaningfully at the ends of the two memoranda. 



ON  CROSS-COUPLING  IN MULTIPLE BEAM ANTENNAS 

PART  I   RADIATION  EFFICIENCIES 

(With Applications to Angle Diversity) 

by 

S . Stein 
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ABSTRACT 

A general multiple-beam antenna system is considered, in which the beam 

patterns overlap. The degree of overlap is defined by a cross-correlation type 

of integral which includes phase factors as well as polar diagrams in the des- 

cription of the beams. It is shown that when beam overlap exists, conservation 

of energy implies the existence of unavoidable cross-couplings between the feed- 

lines, and a related limitation on the radiation efficiency (or corresponding 

receiving cross section) of any single beam when excited alone. Certain problems 

relating to the angle diversity concept are discussed, by way of example. In 

addition, some unsolved corollary problems with possibly important design applica- 

tions are outlined. 

In Part II (a companion paper), the scattering matrix comprised of the array 

of cross-coupling factors between the various feed-lines is considered. Some pro- 

perties are derived, and implications discussed. In addition, further unsolved 

problems relating to characterization of the scattering matrix are also outlined. 
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1. Introduction; 

There are many multiple-beam antenna systems in use or contemplated in which the 

radiating structure may be regarded as driven by a number of feed-lines, each feed- 

line corresponding to excitation of a particular beam. The various beams may be exci- 

ted simultaneously or sequentially, the assumption being made below that the radiating 

structure is not changed physically simply because a particular feed-line is not exci- 

ted. When there is overlap among any of the beams which the structure is designed to 

radiate (overlap in a sense to be defined below), it becomes apparent that the corres- 

ponding excited portions of the radiating structure are likely to overlap, and there- 

fore that cross-coupling may exist between the corresponding feed-lines. In fact, it 

will be shown below that such beam overlap renders cross-coupling unavoidable, and it 

is the object of the paper to describe various implications in terms of the beam pat- 

terns. Most of the attention in this Part I ic given to deriving the basic equations, 

and subsequently discussing radiation efficiency problems, with particular attention 

to the angle diversity concept. In Part IP ', the detailed characterization of the 

cro3s-couplings is treated. 

2. Scattering Matrix Representation of the Antenna System 

Consider an antenna system comprising M feed-lines, feeding into a radiating 

fell 

structure which we regard as a Junction. We define (Fig. l) the k  beam pattern 

as that beam radiated when a generator is exciting the k  feed-line, and it and 

all other feed-lines are terminated in matched loads which absorb any energy reflected 

back from the junction. 

Rather than describe the antenna system in terms of voltages and currents, or 

impedances, it will be useful to employ an incident and reflected wave representa- 

tion (similar to the description of transmission lines in terms of forward- and 

backward-traveling waves). Specifically, let us consider a steady-state, single 

* 'S. Stein and J.E. Storer, "On Cross-Coupling In Multiple Beam Antennas, Part II. 
Characteristics of the Cross-Coupling Matrices," ARM-238, 2 March I96I. 
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frequency situation (harmonic time dependence). We will denote the amplitudes of 

the waves traveling towards the junction in each of the feed-lines by the set of 

complex-valued numbers tic.   X , k ■ 1, ..., M and the waves traveling away from the 

junction at the same time by the set |y I  , k = 1, ..., M. We define the scales 

of the individual xk and y, in each line such that a unit magnitude corresponds to 

a unit power (l watt) level in the wave (power transfer by the wave across a cross- 

section of the line). The phase factors of the x, and y refer to some arbitrary 

reference point in each line. 

We further assume the antenna system contains no non-linear elements. Each 

of the y. is therefore related to the x by some linear sum, of the form 

M 

\ " t  Skm xm CD 
m=l 

where the S  are so-called scattering coefficients. If we write the arrays of the 

x. and y as single-column matrices (vectors), 

x-l    ;    I y = l    •      I (2) 

V 

and denote the M x M array of the Sj^ as the scattering matrix, S (S  being the 

element in the k  row and m  column), we can rewrite Eq. 1 as the matrix equation 

y = Sx (3) 

Next, let us define the M beams in detail as follows:  Consider a generator in 

the k  feed-line, exciting a unit amplitude wave incident on the radiating structure 
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in the k  feed-line, and with all other feed-lines terminated in matched loads 

so that there is no mechanism to produce incident waves in these other feed-lines, 

i.e., 

Xj = o , atk 

Under these circumstances, let the complex-valued field radiated by the antenna 

structure be described (in the far-zone) by 

_» .* _». +   exp(i -5- r) 
\W  - % \M   ^— tk) 

The vector 0 represents the spatial angle coordinates, and r the radial distance 

PIT 
from a reference origin located at the antenna structure. The explicit exp(i -t- r) 

dependence on r is the usual outgoing spherical vave form describing the f-.r-zone 

field, with the form of the angular dependence described by R^©)- The vector form 

for R and E denotes the possibility of two crossed linear polarization components 

(e.g., "horizontal" and "vertical") at each point in the far-zone. (Each polariza- 

tion component is also complex-valued.) We label the angular dependence ^(0) as 

th ■+ ,-» 
the k  beam pattern. We will assume R (0) to be conveniently normalized such that 

~2   / \(*} ' V®3 d® = 1 (5) 

where T) = Tgg; is the "admittance of free-space"; the asterisk denotes a complex 

conjugate; the usual vector dot product (scalar product) is indicated; and the inte- 

gration, as indicated symbolically, is over all spatial angles. With this normali- 

zation, the magnitude of the coefficient, q , is the relative amplitude of the field, 

-3- 
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and its phase refers the phase of the field to that of the wave incident in the k 

feed-line and to the definition of a phase reference in Rj,(0)- B> particular, the 

total radiated power in the far-zone field of Eq. (k)  is given by 

(6) 

Using Eq. (h),  and the normalization in Eq. (5), this reduces to 

where bars indicate the magnitude of complex quantities. Since unit power is inci- 

I  |2 
dent upon the junction, qk  maybe considered to represent the radiation efficiency 

th 
for this k  beam. Also, with the particular excitation and loading specified, 

\ 

2 
must represent energy carried away from the junction in reflected waves 

in the several feed-lines and absorbed in their terminating matched loadsj alter- 

natively described, la I is an insertion loss between the input wave on the k 

feed-line, and the radiated k  beam. 

3. Beam-Coupling Factors 

Having defined the M beam patterns, we now define a measure of the beam over- 

laps. The appropriate measure, as will be seen later, is the set of beam-coupling 

factors defined by 

ßkJ - T /\<»> • V* • (8) 

Clearly, 

ßkj = ßjk    for a11 k>  J <9a) 

-k- 
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and by Eq. (5), 

ht '  ! (9b) 

ßkJ|
2<l (9c) 

It is important to note that Eq. (8) does not define beam coupling simply in terms 

of overlap of the usual polar diagrams. The fact that the \(Q)  are complex-valued 

can be extremely important, since rapid variations in phase in the product being 

integrated can cause the integral to vanish. Such rapid variations can occur, for 

example, if the locations on the radiating structure of the major currents exciting 

the two beams are sufficiently disjoint. For instance, if a set of currents gives 

rise to a beam R(0), and this set of currents is translated by a distance d, the nev 

pattern (cf and r retaining their original meaning) will have the form 

[d     1 "* ""* 
- 12« ^ cos i|rJ R(ö) 

where + is the angle between the direction of the observing point in space, and the 

direction in which the currents were translated. As another example, if we (loosely) 

use the Fourier Transform relationship between the beam pattern and the aperture 

plane fields for a microvave "aperture-type" antenna, the integral in Eq. (8) is 

readily shown to be equivalent to an integral 

/ 
Fk(s) • F (s) ds 

where s represents coordinates in the aperture plane, and F(s) the aforementioned 

aperture fields. But then, if Fk(s) and F (s) are respectively non-vanishing only 

over disjoint sections of the aperture plane, the integral vanishes. In actual 

fact, such disjointness may be more a design ideal than a realized fact, due to 

-5- 
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induced currents, "leakages", etc; and many designs, e.g., phased arrays, of 

course do not have such disjointness to begin vith. (in fact, beam pattern 

measurements may represent a more effective engineering approach to determining 

the actual extent of beam-couplings than trying to determine what actually are the 

totality of currents associated with any given beam pattern.) 

Any pair of beams for which the corresponding beam coupling factor vanishes 

will be said to be decoupled. 

h.    Conservation of Energy Equations 

We can now proceed to the main results of this paper. Consider again the 

steady-state situation envisaged in Section 2, with now a general excitation of 

the feed-lines such that waves are incident on the radiating structure in all feed- 

lines, with the set of amplitudes given by the column matrix, x. As described by 

Eq. (3), the associated reflected waves in all feeding lines are given by the 

column matrix, y = Sx. Clearly, however, we can now complete the picture: Corres- 

i 
I 
I 
I 

ponding to the incident wave of complex amplitude x. in the k  line, there is a 

radiated field, 

exp(i -j- r) 

and hence, by superposition, the total radiated field associated with x is 

E(0) = jfcSvV* 
exp(i -£ r) 
 =*  (10) 

Further,  the power flowing towards the radiating structure is the sum of the powers 

-6- 
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flowing towards it in the individual lines, 

Ptotal " I \\\2 '    I   \ \ M 
k ' I    k 

In matrix notation, we define the transpose of the column matrix x hy the row 

T 
matrix x , 

x = (a,, Xg .... XJJ) (12) 

and by the usual laws of matrix multiplication, 

P    = xT*x (13) rtotal  x x VJ°' 

Similarly, the total power carried by the reflected waves in the feed-lines is 

simply, 

Now, we can also define the transpose of S, 

<»\o" V (15) 

And finally, let us now define the conjugate transpose of S, denoted by the matrix, 

+ 
S , as 

s - (s1)* = (s r 

(s VJ ■ SJk 

(16a) 

and similarly define the conjugate transpose column vectors 

y = (y ) 



Thus we may rewrite Eqs. (13) and (1*0 as 

Finally, the total radiated power, using Eqs. (iß), (9) and (8), is 

rad JV^EV)  ft««! 

M * * 

k,J-l " k kJ kj *J XJ 

If we further define an M x M matrix, | , whose elements are 

ARM-237 

We also recall that for two matrices, A and B, 

(AB)T «= BT AT 
(17) 

P. . . ■ x x total 

Prefl =" 

(18) 

(19) 

and recalling Eq. (3), 

Prefl - ^^^ 

= x S Sx 
(20) 

&       *   * 

*a * * *» ** 
(21) 

Hcj " \ \j *j (22) 

we can write 

P       =xTx 
rad 

(23) 



ARM-237 

The lav of conservation of energy is now very simply 

P+ + , > P „ ♦ P ., (2U) total - refl   rad N 

with the equality sign holding if and only if we are discussing a lossless structure. 

For at least part of our discussion, we shall not make any such restriction; our 

equations above are perfectly valid even if absorption is taking place within the 

structure, so long as the system remains linear in the general sense (in the sense 

of superposition holding for all voltages and currents). We may also note that 

although for any linear passive network, the S matrix will be symmetric (S. . ■ S . ) 

by the law of reciprocity, our forms above have not included this requirement, and 

our equations include the possibility of non-reciprocal systems (non-symmetric S), 

provided, again, they are still linear in the sense of superposition remaining valid. 

With these comments in mind, we finally rewrite Eq. (2h)  in terms of Eqs. (l8), 

(19), and (23), as* 

x+x > x+S+Sx + x+ r x (25) 

and this equation must hold for any arbitrary choice of the excitation voltages, x. 

I am indebted to my colleague, Dr. J. E. Storer, for pointing out the essential 
matrix nature of the fundamental equations, following upon my original derivations. 
Many of the results below would not have been obtained without this recognition, 
and the resulting compactness of the mathematics. The general fundamental result 
in Eq. (39) was pointed out by Dr. Storer, immediately upon this recognition. 
He also pointed out the possibility for extending the studies to discussions of 
the scattering matrix, thus stimulating and contributing to the further investiga- 

tion reported in the companion paper, Part II. 
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We may note that, if we introduce the identity matrix, I, 

<**"*•{] \yt 
u6) 

we can rewrite Eq. (25) as 

x+(l - S+S - T) x> 0 (27) 

.A. 

and, since this holds for arbitrary x, it states that (l-SS- r) must be a posi- 

tive semi-definite matrix for a lossy network, and must be the zero matrix if and 

only if a lossless structure is involved. As will be shown immediately, it is also 

Hermitian, and this is sufficient to provide much valuable information. However, 

we will ultimately wish to return to Eq. (25), and hence will continue to use it 

directly throughout our derivations. 

5. Limitation on Radiation Efficiency Implied by the Conservation of 

Energy Equations; 

Let us first note that both T and the matrix 

(28) w = s s 

are Hermitian, which is to say that 

r+ = r »%-% 

W+    = W (W+Vj -%j 

(29) 

The second of these follows directly from Eq. (28), 

W+ = (S+S)+ = (S+)(S+)+ = S+S = W 

-10- 
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and the first from the definition of T in Eq. (22), and the symmetry property of ß 

in Eq. (9), 

( P + )kj " rjk = (*J ßjk */ = *j ßjk £ m \  ßkj *J = P kj 

Secondly, both V and W are positive semi-definite, i.e., for any vector z, 

zr z > 0 

z+Wz > 0 
(30) 

The second of these follows almost immediately again from Eq. (28) 

z+Wz - z+S+Sz ■ (Sz)+(Sz) > 0 

M 
(i.e., for any column vector t, t t ■ Y     t > 0, with equality only if all t. = 0). 

k=l ' fc| " K 

The first follows likewise by noting from Eqs. (22) and (8), 

K, J=X 

• RJ<9) «1 «J *> 

w |x 
zk *k Va jk zk \ \ft k=l 

dO > 0 

since the product in the integral is now the square of the absolute value of the 

magnitude of a complex vector. Now, with both W and V known to be positive semi- 

definite and Hermitian, we know from matrix theory the important property that 

each has exactly M positive real or zero eigenvalues, and M corresponding mutually 

-11- 
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orthogonal (complex) eigenvectors. We also know that there exists a unitary matrix 

U, whose columns are a set of orthonormalized eigenvectors of T,  such that 

U+U =» I, or U+ » U"1  (unitary property) (3l) 

and 

u+ru = 7 (32) 

where 7 is a purely diagonal matrix. That is, the elements of 7 on the main diagonal 

are the eigenvalues of T,  and the off-diagonal elements are 0, 

7kj = 6kj 7k'    7k P°8itive real or zero (33) 

* 
It is important to note that each eigenvector of a matrix is determined only to 
within a scale factor. The normalization to unit length, i.e., the requirement 
+ 

z z = 1, is necessary if the eigenvectors are to be used to construct a unitary 
matrix with the properties given in Eqs. (31) and (32). However, the components 
of z are still completely indeterminate to within a common phase factor of the 

±6 
form £ . Stated another way, suppose we consider any matrix D which is diagonal, 
with elements, 

\) 

k A i 

i.e., D of the form 

D = 

e 

€ 

where (6.., $  , ... j6„ are arbitrary real numbers. Then it is readily verified that 

any such D itself is unitary and that any matrix V of the form 

V = UD 

is also unitary, and also diagonalizes V  into 7. Forms like D are encountered in 
Part II in attempting to characterize the form of the scattering matrix. 

-12- 
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If we return to Eq. (25), and introduce U as Just defined by transforming from 

x to a new (equally arbitrary) vector z, 

x = Uz 
(3*) 

X = z U 

we can rewrite Eq. (25) as 

z+U+Uz > z+U+S+SUz + z+U+ r Uz 

Or, using Eqs. (31) and (32) 

z+z > z+U+S+Uz + z+Tz (35) 

We may rewrite this inequality as 

z+(l-T)z> z+Tz (36) 

where 

T - uVsU (37) 

is readily observed to also be Hermitian, and positive semi-definite. Now the 

right-hand side of Eq. (36) is positive or zero, for arbitrary z, while on the 

left-hand side, the matrix (I- 7)  has non-zero elements only on the diagonal. It 

follows from the arbitrariness of z under which Eq. (36) holds, that these diagonal 

elements of (i-"^) must hence individually be positive or zero, i.e., we must be 

able to write 

where 

4 = i-yk>o (38b) 

-13- 
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This is an important result. In particular, Eq. (38b) implies that the largest 

of the eigenvalues of p cannot exceed unity, 

If we recall the form of r> i.e., 

where the ß . are fixed by the design of the beams, we see that Eq. (39) places 
•Kj 

direct limitations on the values of the beam radiation efficiencies, q. I . In a 

companion paper,   we derive further from the conservation of energy equations, 

some of the properties of the scattering matrix, S. In the remainder of this paper 

we will discuss, via examples, the physical meaningfulness of the result in Eq. (39). 

6. Example: Equal Beam Efficiencies (Angle Diversity Receiving Arrays) 

An important and simple result is obtained from Eq. (39) for the case when all 

the beams are designed to be a priori equal, i.e. 

q <= q  for all k (1+0) 

This has been the usual design case, for example, in angle diversity receiving arrays 

of 

T2l 

of the kind under recent study in connection with tropospheric scatter reception;      j 

A.B. Crawford, D.C. Hogg, and W.H. Kummer, "Studies in Tropospheric Propagation 
Beyond the Horizon," BSTJ, 38, IO67-II78 (1959). 

s   '  J.H. Vogelman, J.L. Ryerson, and M.H. Bickelhaupt, "Tropospheric Scatter System 
Using Angle Diversity," Proc. IRE, 1+7, pp. 688-696 (1959). 

* ' R. Bolgiano, Jr., N.H. Bryant, and W.E. Gordon, "Diversity Reception in Scatter 
Communications with Emphasis on Angle Diversity," Cornell Univ., Final Report, 
Part I, on AF30(602)-1717, Jan., 1958. 

*'* C. Chu, A.H. Wren, and J. LaRue, "Evaluation of the Pincushion System," Univ. 
Mich. Rad. Lab. Rept. 2872-l-T, RADC-TN-6O-5O, Feb. i960. 

* ' W.R. Richard and M.H. Bickelhaupt, "Multiple Angle Diversity Design Considera- 
tions," Rome Air Development Center, RADC-TN-60-22, April, i960. 

-ill- 



ARM-237 
(7) 

and it was, in fact, difficulties which were first noticed during a related study 

which originally motivated the present investigation. In disucssing a receiving 

array, rather than a transmitting array, we are invoking the well-known reciprocity 

relationship between the receiving and transmitting antennas, which can be readily 

shown to apply to the radiation efficiency defined by q I above. I.e., if all M 

beams are allowed to receive simultaneously with matched receivers, one may calculate 

the actual power received by each receiver by first calculating the power which would 

be received according to its corresponding beam pattern, as if no other beams existed, 

and then multiplying by the radiation efficiency 

Returning to Eq. (ko), we see that it implies 

12 * q,       for that beam. 

<Vj - M2 ^ ("1} 

It then readily follows that the < 7. / ,  the eigenvalues of T, are directly related 

to \ß^( )  "the set of eigenvalues of ß, by 

r_- __—___—__ 
v''D.E. Johansen and S. Stein, "Theory of Antenna Performance in Scat+.er-Type 

Reception.'1 to b^? published in IRE Trans. PGAPj also see report under same- 
title by Stein, Johansen, and Starr, Hermes Electronics Co., AFCRC-TR-59-I91, 
30 September 1959. 

* 
A note of warning: In many of our results, there is no limitation on 
whether or not the antenna system is reciprocal. However, whenever we discuss 
a receiving array in terms of transmitting properties, the entire antenna system 
is being assumed to be reciprocal. In an actual case of a non-reciprocal 
antenna system, one will generally want to consider the receiving properties in 
terms of an equivalent reciprocal transmitting antenna; where, however, it may then 
no longer be possible to relate receiving properties to measurements made with 
the real antenna system transmitting. 
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M2s wrz <»» 

and Eq.  (39) becomes 

,2 

k max 

Thus, in this case, the inherent limitations due to conservation of energy are 

completely related to the array of beam cross-coupling factors. Incidentally, it is 

well known that for any Hermician matrix, the sum of the eigenvalues equals the sum 

of the diagonal elements (the trace of the matrix). Thus the largest eigenvalue 

exceeds the average of the diagonal elements, so that since all diagonal elements of 

II2 I 18 
ß have the same value ß,, =1, q  < 1 is implied; and |q  ■ 1 is possible only 

if all eigenvalues are equal, which in turn is readily observed to require that all 

non-diagonal elements of ß vanish, i.e., no beams overlap (e.g., see the next sec- 

tion ). 

In Appendix 1, we discuss some specific numerical examples which indicate the 

order of magnitude of the IOSL in radiation efficiency, for what we regard as some 

very realistic antenna beam patterns for angle diversity. In particular, we note 

that although previous angle diversity analyses have considered the effects of beam 

overlap with respect to correlation in observed propagation-induced fluctuations at 

the beam output receivers (see also Section 8), they have generally ignored the 

(basically independent) question of the unavoidable "insertion losses" in the antenna 

Junction whose existence has been shown above. A general statement Justifying such 

an approach seems to be the assertion that if beams are squinted so as to cross over 

at the 3 db points or lower, then in effect they represent essentially independent 

receptors of power. The inconsistency of this assumption is, we feel, evident from 

Appendix 1; the numerical results, nevertheless, we found to be somewhat startling. 

In addition, we refer the reader interested in angle diversity to the further 

discussion in Section 8, and the interesting numerical example and discussion in 

Appendix 3» 

-16- 
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7. Example: Two Limiting Cases 

As further relevant examples, we consider two special cases: 

(a) No beam overlap. 

In this case 

hk'1 

ßJk=0 ,   J*k 

Thus, for this case 

(Via) 

rkJ = {' (Ute) 
0     *t i 

and, by inspection, the eigenvalues of P are exactly 

\ - K|2 «■*•> 
Thus if all q   are equal, all beams can be made to have 100$ efficiency 

o 
(Iqj = i), as one might expect physically. 

A further interesting point now arises from this example. Suppose even though 

i 2 
the beams are uncoupled, the design aims at different Iqj  for each beam. Then one 

or more beams corresponding to the largest value will have 100$ efficiency, but the 

others will not. That is, although potentially all beams could be made 100# efficient 

in this non-overlap situation, a poor a priori choice of the relative q, would imply 

building into the system cross-couplings which are not "necessary". This may appear 

to be a very peculiar kind of statement; nevertheless, it appears that there are 

many more general antenna system engineering problems where such a priori choices 

must be made (usually the choice being that all q are equal, perhaps without 

realization that alternatives exist). A further discussion of this issue is given 

in the next section. ,_ 
-17- 
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In addition, in Appendix 2, we indicate hov one might extend these non-overlap 

results, via perturbation theory, to a case of much practical design interest, namely 

that in which the amount of beam coupling between all beams is small, 

(b) Complete Beam Overlap 

From a mathematical point of view, it is illuminating to consider the 

other extreme limiting case where all beams overlap completely. Physically, this 

1       corresponds to having several "taps" at some point down the line from a single feed. 

I 

I 
That is, vre really do not have separate beams, and certainly cannot extract at each 

tap an amount of power equal to the total power received by the beam; yet we insist 

that a correct mathematical formulation, such as we claim to now have, must be 

capable of fully and correctly accounting for this situation (this simple limiting 

example, again, being one of the source points for the entire investigation). 

For complete overlap, we have 

>*-X 

<V= < qj 

for all j, k U5) 

It is readily determined that the eigenvalues of T  comprise an (M-l)-fold degenerate 

zero eigenvalue, and one with the value 

IN2 ™ 7 

i 

Thus, without discussing the individual beam radiation efficiencies, we see immedi- 

ately from Eq. (39) that we have 

I hi2 <-' <*> 
J 
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which is just what our physical intuition requires. While there is nothing really- 

startling in our achieving this result, since we assume our mathematics have been 

correct, it is quite satisfying to know that the formulation routinely describes 

thio limiting case, as well as other cases not quite so simple. We are not aware 

of any previous mathematical description for this general problem which has this 

satisfying property between all extremes. 

8. Example: Specification of Relative Radiation Efficiencies (Application to 

Optimum Angle Diversity) 

Let us return to the general result of Eq. (39)* and consider, for a general 

form of the matrix, ß, the question of specifying relative radiation efficiencies. 

To emphasize what is being specified, it is illuminating to introduce these relative 

values as dimensionless ratios, K , and to assume that all the q. are now in the 

form 

(^ ■ Kj_q U5a) 

The elements of V  are thus in the form 

■ |qf KiJ »*) 

Thus, if we can find the eigenvalues, K,., of the matrix &, we will have 

and from Eq. (39) 

1 '   v<^k;max 
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At this time, this much is straightforward; however, we regard the availability 

of an arbitrary pre-specification of the K as constituting an extremely interest- 

ing problem area. It appears, moreover, that it is precisely with this problem 

that one necessarily makes contact with the question of the ube of the multiple- 

beam antenna system. In many applications, such as angle diversity referred to 

above, or the case of a phased array in which only one beam is active at a time, 

the question of the radiation efficiency of a single beam and of individual line 

cross-couplings is paramount. In other applications, more than one transmitting beam 

may be excited at a time, and it is then the performance of the superposition of coupled 

currents which is relevant. Further, for example, in examining angle diversity for 

tropospheric scatter systems, one would want to choose the K to maximize the diver- 

sity performance; in other systems, one might want to impose a constraint of maxi- 

mum (or minimum) antenna system directionality in certain directions; in others, 

an approximation within specified tolerances to some composite beam pattern, with 

maximum power transmitted or received, might be the goal. 

That this problem of the optimum choice of the K. is important we have already 

seen from our discussion of the zero coupling case in the previous section. It 

was pointed out that, if all beams are decoupled, any choice of unequal K would 

lead to less than 100# radiation efficiency for some of the beams, but that in 

this fully decoupled case there was no inherent reason for malting such a poor 

choice. While for this particular problem the correct choice was obvious on phy- 

sical grounds (see also the discussion of the weak coupling case in Appendix 2), 

it is not at all apparent as to what might be lost in a more general situation 

where an arbitrary choice (say all equal) is made for the K . Thus the general 

unsolved problem is to learn more about the implications of the relative values of 

the q , as they affect the Yi> and in turn through the latter (the conservation 

of energy constraints), the absolute scale on all the q.. 

-20- 
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As an interesting example of what such a study might lead to in a particular 

configuration, we can formulate the problem in the angle diversity case. (Unfor- 

tunately, we cannot solve the problem in general. Nevertheless, as we indicate 

later by an example in Appendix 3> in many particular ernes solution may be pos- 

sible without exorbitant effort.) The quantity of direct interest in these pro- 

blems is either the probability distribution of the fluctuations in received pover 

or some closely related system performance statistic. The basis of angle diver- 

sity as applied to the fading signals of tropospheric scatter is the desire to take 

advantage of experimental observations that the instantaneous angle of arrival of 

the waves appears to wander. A number of receiving beams are thus used, each point- 

ing in a different direction, and their outputs combined via an appropriate network. 

The best combining rule, if thermal noise fluctuations are independent from receiver 

to receiver, is so-called maximal-ratio combining, the effect of which is, assuming 

equal noise in all receivers, to add the effective powers of all the receivers. 

The output noise level, on the assumption made, is the same as that in any single 

receiving channel. Further, assuming that the fluctuations in signal are described 

by so-called Rayleigh envelope fading, possibly correlated between receivers due to 

beam overlap, the characteristic function (Laplace transform of the probability 

density) has the form 

F(z)'detön-zLT M 

Here z is the transform variable, while L is the M x M complex covariance matrix 

among the complex characterization (a band-pass system is assumed) of the fluctuation 

* \I.N. Pierce and S. Stein, "Multiple Diversity with Nonindependent Hading," 
Proc. IRE, U8, pp. 89-IOU (i960). 
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process at each receiver. In the parlance of our present investigation, 

where the bar indicates a statistical average over the fading fluctuations, and 

each e is the (complex) voltage (effective rms into a 1 ohm load) which would be 

obtained at the receiver output if the j  beam were received with its specified 

I pattern, with no other beams present in the configuration (no cross-coupling to 

(7) 
other beams). It has further been pointed outv " that for non-coherent PSK digital 

data communications, ^ F(z) in Eq. hi  gives the average bit error rate, if z is 

taken to be z = «- , where N is the noise level. Better yet, if all signal 
o 

levels are normalized to, say, a median level, z can be taken as proportional to 

the median-signal noise ratio (see Appendix 3). Hence F(z) in Eq.. (hj) may in 

itself, for a specific z, be considered a useful performance measure for the sys- 

tem. In writing Eqs. (h'j)  and (b8),  there is no presumption that the average level 

of the fading signals in the respective receivers (the e, ) are the same; in general, 

depending upon the nature of the transmitting antenna pattern and the actual receiv- 

ing array configuration, these average levels will differ. Finally, under very 

(7) 
reasonable assumptionsv  , it is permissible to assume that one can define an 

apparent distribution of fluctuating sources "in the sky" equivalent, in reception, 

to the actual fields set up by the transmitting antenna. In terms of the intensity 

distribution (mean square value at each direction) of this equivalent source dis- 

tribution, one can write 

where g(o) is the aforementioned intensity distribution and the \Ry(®)) are **ie 

normalized beam patterns defined earlier by Eqs. (k)  and (5). If we thus define 
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an array of "beam correlation factors" by the equation 

GkJ = T J \(®} ' fy^ g(®J d® » (50) 

we can vrite the matrix L in the form 

■kj = 4 Gkj »J (51) 

(quite analogous to the form of the P -matrix). We can further introduce again the 

dimensionless K. (Eq. h5&),  and vrite 

V»-1«|2 < V» «i (5S» 

Thus the over-all optimization of the angle-diversity system, assuming the trans- 

mitted field and the receiving beams to be already specified and fixed, consists 

<  ( 
in finding that set * K > which, along with the associated best possible value for 

2 *  ' 
|q| (Eqs. 1+5-1+6), minimizes F(z) in Eq. (1*7) for some specified z. The implica- 

tion of this statement of the problem is that with a specified transmitted field 

and array of receiving beams, it might be optimum to enhance the efficiencies of 

some of the beams at the cost of degrading others, to achieve an over-all optimum 

performance. The formulation above seems to provide a precise mathematical state- 

ment of a problem which has been remarked upon only superficially, at best, in 

previous studies. The solution to this problem, with further optimization of the 

receiving beam array configuration and nature of the transmitted field, seems 

likely to provide useful information as to the true effectiveness of angle diver- 

sity systems. 

In Appendix 3> we consider a typical angle diversity receiving array by way 

of illustration, with some interesting conclusions (at least for the numbers chosen). 
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9. Conclusions and Unsolved Problems 

A general formulation has been given which points up the importance and some 

of the implications of conservation-of-energy relationships in multiple-beam antenna 

systems. These implications appear as limitations on radiation efficiencies for 

individual beams. In Part II,   further implications are given in terms of char- 

acterizing the form of the scattering matrix, i.e., the array of feed-line self- 

and cross-couplxng factors. These results, together, appear- quite important for 

elucidating inherent antenna system design limitations following upon particular 

choices of beam patterns in such multiple-beam systems. 

It appears that further useful results remain to be obtained. These unsolved 

problems appear to lie in better understanding of certain matrix problems, and in 

applying maximum ingenuity towards analyzing particular classes of matrices. With 

respect to the material discussed here in Part I, the major aspect which we regard 

as unsolved is the significance of the a priori choices of the relative beam radia- 

tion efficiencies (e.g., the K defined in Section 8). In particular, the open 

question is whether one can determine optimum choices, using relevant criteria as 

to the desired system performance. Even in the angle diversity case cited, where 

the problem has been reduced to a specific mathematical statement, one does not 

have a general solution. For other systems, the deduction of the mathematical 

statement from which optimization can be determined may represent, in each case, 

a formidable problem in itself. 
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Figure 1.   Multiple Beam Antenna System 
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„oJtUZED   ANGLE OFF BEAM AX.S 

Figure 2.   Typical Beam Patterns 
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•»   9; HALF-SQUINT ANGLE BETWEEN BEAMS 

Figure 3.   Beam-Coupling Factors 
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Figure 5.     Typical Angle Diversity Configuration 
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APPENDIX 1: A NUMERICAL EXAMPLE FOR RADIATION EFFICIENCY* 

In Figure 2, we show three beam patterns of interest (field patterns) for a 

circular aperture with linear polarization. Two of these are idealized patterns: 

These are for the "uniformly illuminated" aperture of radius a, rjid the gaussian- 

illuminated aperture (with the aperture currents extending to infinity). The 

f      r2\p 
third is a tapered-aperture distribution of the form ll sJ  , with p = 1. For 
IN  a/ 

all three, the parameters of the antenna were chosen so that the main lobes are 

essentially of identical width at the 3 db points. The tapered distribution repre- 

sents a good approximation to actual designs which aim at lower side-lobe levels 

than associated with the uniformly-illuminated aperture, while at the same time 

avoiding the losses due to spillover (which do not appear in these theoretical 

calculations). 

We assume next that for each type of beam, a multiple-beam system is con- 

I 
structed with a common aperture, with the various "squint" angles (directions of 

pointing) obtained by appropriate uniform phasing of the currents across the aper- 

tures. With this assumption, we can readily compute the beam-coupling factors 

between any pair of beams, (incidentally, the calculations are most readily accom- 

plished by recalling the Fourier Transform relationship between beam patterns and 

corresponding aperture distributions; and then transforming Eq. (8) as a special 

case of a convolution integral to give an equivalent integral over the aperture 

plane.) In Figure 3, we have plotted as a function of the squint angle between any 

pair of beams of like type, the associated beam-coupling factor, ß. An additional 

*   
I am indebted to my colleague, Mr. W. J. Cowan, for providing me with the 
material of this section, especially Figures 2, 3, and h;  and as well, the 
numerical data used in the example of Appendix 3« 
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curve has been added here for the p «= 2 taper, whose beam pattern would be even 

closer to the gausslan in Figure 2 than the p = 1 pattern. The abscissae in 

Figure 3 are half the total squint angle between beams, with the same angular scale 

as in Figure 2. Thus, for beams crossing over at the 3 db points, we see by compar- 

ing Figures 2 and 3 that the overlap factor varies from 0.k5  for gaussian shaped 

beams, to about 0.35 for the tapered illuminations, to about 0.1 for the uniformly 

illuminated case. 

For two beams, with equal a priori radiation efficiencies, the eigenvalues of 

interest are those of the ß-matrix, obtained by solving 

1 - x ß 

1 - x 

x  = 1 - ß 

x2 = 1 + ß 

(Al-1) 

From Eq. (U3), the associated upper-bound radiation efficiency is thus given as 

max  1 + ß 
(Al-2) 

For ß = 0.U9, 

ß = 0.3 , 

ß - O.lU, 

max 

max 

O.67 

O.76 (Al-3) 

2  = 0.88 
max 

These are shown as the case M = 2 in Figure k.    It is interesting to note that 

Al-2 



with only the two beams, the efficiencies are already reduced hy 25%, or about 

1 .k dbl In Figure k,  we have also indicated additional radiation efficiencies 

for particular higher-ord/»r configurations for which calculations have been made 

for other purposes. In all cases, equal a priori radiation efficiencies are assumed 

(also see, however, Appendix 3)- The circles in the sketches of the configurations 

show how the -3 db contours intersect for the assumed configurations. It Is inter- 

esting to note that the data do not seem to lie on smooth curves. This is parti- 

cularly true for the M =- 5 case. We attribute this, comparing the sketches of the 

!       configurations, to the fact that it is the actual couplings of each beam to adjacent 

beams which is important, and these are especially different for the M ■ 5 configu- 

ration than for either the M = 7 or M = 18 cases. 

Incidentally, the results in Figure 3 indicate quite different beam overlap 

factors, and hence quite different cross-couplings, for beams which differ only in 

their side lobe structure but have almost identical main lobes. In one sense, this 

points out the importance of the side-lobe structure in multiple-beam systems. In 

another sense, it verifies a common engineering fact, that one may make minor changes 

in a feed structure which essentially leave the main beam unchanged (presumably, 

however, radically altering the side-lobes), while radically reducing cross-coupling 

effects. It is also interesting to note from Figure 3 that those beam patterns 

(tapered illuminations) which more closely approach the ideal of a monotonic decrease 

of field off the direction of pointing, are also those which are worst in terms of 

producing beam overlap and hence cross-coupling effects. In any case, beam overlap 

effects appear to be far from insignificant. 

I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
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APPENDIX 2: WEAK BEAM OVERIAP - A PERTURBATION CALCULATION 

In this case, we assume for the overlap factors, 

v**'1 

% 
« 1 ,  J f  k (A2-1) 

An array of overlap factors of this type is extremely important from an engineering 

viewpoint, since it is likely to represent the situation where some overlap is 

occurring, but every attempt has been made in design planning and because of opera- 

tional requirements to keep it small. For particular cases, where conditions of 

symmetry and the like sufficiently simplify the problem, an exact solution may be 

possible. This is shown, for example, by the illustrative problem treated in 

Appendix 3. In this section, however, we wish to indicate a more generally appli- 

cable method for obtaining an approximate solution in a general case, by applying 

standard perturbation techniques,  '    with the zero-coupling case in Eq. (hk) 

regarded as the unperturbed case. I.e., we write the P -matrix for the weak- 

coupling situation in the form 

r =   r^ + € f (A2-2) 

where T   is the matrix for the zero-coupling case, p' is a matrix whose ele- 

ments are of the same order as those of T  >  «id e is a perturbation parameter for 

which it is assumed that 

€ « 1 (A2-3) 

^  L.I. Schiff, Quantum Mechanics, McGraw-Hill, New York,19^9, P- IU9-I56. 

* 'R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, I960, p. 61-63, 
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Thus, referring to Eq. (kk),  we have 

Further, for T  , we can formalize the results in Eq. (hk),  by describing its m 
"hVi 

eigenvector, 11 , and corresponding m  eigenvalue, 7 , as satisfying the matrix 

equation 

(0) 
P   u = 7 u (A2-5a) '    m   m m 

or,  in component form, 

£  rjk) umk " Vmj ^-5b) 

where u . is the k  component of the m  eigenvector. Referring to Eq. (kh),  we 

readily observe that 

I and that the detailed components of the corresponding normalized m  eigenvector have 

the very simple form 

umk = ° »  k ^ m 
(A2-6b) 

u  =1 mm 

In addition to all eigenvectors being normalized to length unity, we may recall that 

for a Hermitian matrix, they also form a mutually orthogonal set. For the case of a 

degenerate eigenvalue, there is some arbitrariness in the construction of this mutually 

orthogonal setj we will discuss this point further below in connection with the per- 

turbation calculation (we have seen already that we may indeed have much physical 
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interest in a case where BOO« or all the q. are equal in magnitude, in which event 

the M x M matrix P   has up to an M-fold degeneracy). 

The perturbation calculation, in effect, seeks to observe the (presumed) gradual 

and continuous changes in the eigenvalues and eigenvectors of V  as the perturbation 

parameter, e, in Eq. (A2-2) increases slowly from zero. Since the diagonal elements 

of any r-matrix are always Just 

r** - Kl - ^ <*-« 
we see that any perturbing matrix, p', in Eq. (A2-2) must have identically zero 

elements along the main diagonal, 

rkk = °    for all k (A2-8a) 

Furthermore, although e is to be a parameter in the perturbation calculation, we 

will always wish to choose as our point of calculation the combination of € and f1' 
(0) 

such that for the off-diagonal elements (recalling that P-, ■ 0» j f k), 

where the ß  is that described in Eq. (A2-l). 

Now the essence of the perturbation calculation is to assume that the eigen- 

values and eigenvectors for the perturbed matrix, P , in Eq. (A2-2), differ only 

n(0) 
slightly from those of \        ;  and that they can be represented as power series 

expansions in the small parameter, e, with zeroth-order values given by the corres- 

ponding forms relative to P  « I.e., if the m  eigenvector and eigenvalue of P 

A2-3 
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m mk m 

oo 

E 
n=0 

, . £> ♦ «£> ♦ «*£> ♦ .... f AW mm m m *-x       m n=0 

(A2-9) 

mm m m *-v        m 

(For the usual non-degenerate case, we would take z    ' = u   and i|r   ' ■ 7  ; we 
m    m    m    m 

amplify on this below.) If we insert Eq. (A2-9) into Eq. (A2-2), recognize a 

zeroth-order identity on the basis of Eq. (A2-5a), and collect all terms in like 

powers of €, we have a term-by-term power series identity relating the higher-order 

perturbation correction factors. Confining ourselves to the first two orders, we 

have 

First order: r(0) z(l) ♦   f   z<0) = t
(0) «(l) ♦ *(l) z(0) {**-*» mmmmmm 

Second order:       r(0) *(2) ♦ T'   z(l) = & z<2> ♦ t(l) *U) ♦ +(2) *(0)        (A2-ll) m       m    m   m    m   m    m   m 

At this point, the remainder of the effort consists in recognizing and using 

the fact that zL     ancL z   are themselves vectors in the M-dimensional space spanned 

by the mutually orthogonal, normalized set £u, ^ , and hence that they can be expanded 

as a sum over the fu.7 with appropriate coefficients. However, first we must con- 

sider again the degeneracy problem. It is likely, and indeed common (e.g., the 

"line-splitting" in quantum-mechanical problems) that under perturbation a zeroth- 

order degenerate eigenvalue will give rise to non-degenerate (unequal) perturbed 

eigenvalues. Now, although for a Q-fold degeneracy in an eigenvalue of a Hermitian 

kt-k 
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matrix, Q mutually orthogonal eigenvectors can be constructed, any linear combina- 

tion of these also satisfies the eigenvalue equation for the particular degenerate 

eigenvalue, and may substitute as an eigenvector. Thus, although we know that the 

perturbed eigenvector has as its zeroth-order form some particular such linear com- 

bination, we do not know a priori what this form is; generally it will not corres- 

pond to a particular one of the set of mutually orthogonal eigenvectors which we 

have somewhat arbitrarily constructed in the degenerate zeroth-order situation. 

Thus, for example, if (say) the first Q(m =1, ... Q) eigenvectors of T   describe 

* (o)       /   \   /    \ 
such a degenerate eigenstate, we must replace zx  in Eqs. (A2-9) to (A2-11;, for 

any m < Q (i-e«> in seeking a perturbed state corresponding to one of the zeroth- 

order Q-fold degenerate eigenstate) by some linear combination 

z'0' = V a . u, (A2-i2a) 
m    fa    mj j 

where the a  will also have to be determined by the perturbation calculation. We 

still, of course, take 

Furthermore, pursuing our earlier remarks, we expand z   and z   in terms of 

the Tu "I • However, since we have already introduced in the zeroth-order term, those 

u which correspond to the unperturbed state, we argue^"*'*  ' that we can omit such 

_ 

We will focus our attention, for notational convenience, on these first Q eigenstates, 
where Q is the order of degeneracy associated with the first eigenvalue. It will be 
trivially obvious to the reader that these considerations apply, with minor notational 
changes, to calculating perturbations for all of the eigenstates. 
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terms in expanding z       and z*\    , i.e., we write 
m      m 

M 
£*' m     f     b . u. (A2-13) 

*i2) -  I  •«, •« (A2-1U) 
I 

{       (It turns out that if one attempts to keep terms in z^  and z   relating to the 

zeroth-order eigenstate, the associated coefficients are basically undetermined by 

I       the perturbation calculation. One can argue that their value is then supplied by 

a normalization of the perturbed eigenvector; and this shows them to be always higher- 

order terms which never enter the calculation at the order being computed. Although 

there are more sophisticated approaches which over-all appear to deal more precisely 

with this problem, for the low order to which the perturbation corrections would 1. v.red 

in our case, the more conventional approach being presented appears quite adequate 

and purposeful.) Further, using Eq. (A2-5a), it now follows that 

r(o) z(i) „ £ (   j 
j m    j^fl "■ J J 

I r(0)Zm
2)= I     c. 7.u. (A2-16) 

I       Thus, we can now rewrite Eqs. (A2-10) and (A2-11) a9 follows: 

(A2-17) 
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L C-J 7J UJ+JL ^r; UJ - JL vi ^ + JL v> *»1} UJ j=Q+l -  -  -  J^-l ■«     J   J-Q+l - - J   j^fl 

Q 
,(2) + &Vj*i"uj  (A2-l8) 

Finally, ve now apply the orthononnality of the set Ju 7 , i.e., 

It is also convenient to note, by using Eq. (A2-6b), that 

< P' UJ " P*kJ (A2"20) 

We can thus obtain from Eqs. (A2-17) and (A2-18) (recalling also that Y - Y = ...-¥1). 
X        2 fei 

* iQ |x ^ P« » -^♦il) (A2-2D 
First Order:   ( 

k > * bmkrv +   I affiJ r'k, - b    Y (A2-22) 
j*l    ■ 

M ä [2) 
I 
I 
I 
I Eq. (A2-21) may be regarded as a set of Q homogeneous linear algebraic equations 

*<Q      ^Vj V^*; (A2-23) 

Second Order: 

in the variable a^* 

■ ( **'•.! - "Li ti1^ - 0»       k - 1, ... , Q (A2-25) 

A2-7 
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I 
1 

Non-trivial solutions exist only for values of ir      such that ■ 

det (P'kj * \j +115) Q = ° ^'26\ 
where the subscript Q is written to indicate that it is a particular submatrix of V 

(l) 
which is involved in this calculation. The Q solutions for t ' represent the 

corresponding first-order correction factors for the initially Q-fold degenerate 

state. If all the values for <r ' are unequal, the perturbed state is non-degenerate; 

if some are still equal, these comprise a residually degenerate state, at least to 

first order. It is interesting to note that for a non-degenerate zeroth-order state 

(Q ■ 1 in Eq. A2-26), we have directly 

^^mm'0 (A2-27) 

(we here write m in general, rather than m ■ 1 as would be specifically required in 

Eq. (A2-26) by our predicate that we are examining the perturbations of the first, 

Q-fold degenerate, state, with m ^Q). 

For a given solution for t ' in Eq. (A2-26), one may solve Eqs. (A2-25) for 

the corresponding set ^a . { , with one of the a  left undetermined. If there is 

a residual Q -fold degeneracy, there will be a corresponding set of Q' undeter- 

mined coefficients; the Q1 additional coefficients can be determined by carrying the 

computation to a higher order (if this removes the degeneracy), or else constructing 

an arbitrary mutually orthogonal set, as is normally done in connection with a 

degenerate eigenstate. In any case, there is always one coefficient left unspeci- 

fied, which can be fixed by a normalizing requirement, e.g., that the eigenvector 

z   defined in Eq. (A2-12) be normalized to unit length, 

IK (A2-28) 
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We can next determine the b . (k>Q) from Eq. (A2-22), 

- v h r    t  a»< P*« m  'k j-1 
Ä     rm-rk äs mJ '' w 

Thus far, we have discussed only the first order perturbation. We can now 

return to the second order. From Eq. (A2-23), if the m  state is one for which 

the degeneracy was removed in the first order (hence the a . determined) 

M *(2) . JL f w  w 
m   amk j4+l "J  kJ 

(any k < Q may be used here). If the m  state is still, in first-order, one of a 

Q -fold •'«rren.erate system, we have to instead employ the solution for the b  in terms 
a, 

i 

of the Q,   undetermined  a , as given by Eq. (A2-29)j we substitute this into the 

appropriate Q  equations of  Eq. (A2-23) and end up basically with a set of Q' 

homogeneous linear algebraic equations in Q variables.     The requirement that 

the determinant of this Q -fold system vanish, for non-trivial solutions to exist, 

(2) 
then gives the values for t  | and then in turn the equations yield the correspond- 

ing sets of a^, with one undetermined and to be fixed by normalization. If there 

is residual degeneracy in this order, it must be handled just as commented upon 

earlier (either look for higher order terms, or settle for the degeneracy and con- 

struct suitable sy. accordingly). 

The determination of the c  from Eq. (A2-2U) is then straightforward. By way 

of further concluding our results, we note that wherever in our perturbation formulas 

a factor  r,v appears, a factor £ appears in conjunction with it. Thus, we see that 

exactly the forms in Eq. (A2-8b) always enter in. Thus, for instance, we note that 

A2-9 
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Or 

Q M Q 

r - r, psi *    Jp 
m j 

u, 

'»* li ^ "«+ JL ^TY  I. V *i sft s (A2-30) 

Similar remarks hold for the eigenvalue, and into all higher-order perturbations. 

Finally, we again call to attention that ve have basically described the con- 

struction of one perturbed eigenstate, or of one member of a perturbed degenerate 

eigenstate. The calculation must be carried in turn out for each of the total of M 

eigenstates associated with the f-matrix. 
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APPENDIX 3:  OPTIMIZATION OF A TXPICAL ANGLE DIVERSITY ARRAY 

a) Radiation Efficiencies 

We will consider as a typical angle diversity receiving array that pictured in 

Figure 5« There is a central beam (Beam 3) and four symmetrically placed side 

beams (Beams 1, 2, k,  5)« On. grounds of physical symmetry, we will assume the 

latter four are all a priori assigned equal radiation efficiencies, 

! 

I 

^l"^"^"^"* (A3-la) 

while the center beam has some different efficiency, by a ratio, K, 

q3 » Kq (A3-lb) 

Furthermore, we assume all the beams to be excited by currents in a common aper- 

ture, with only phasing across the aperture to produce the different beam point- 

ing directions. In this case, we can take all the beam patterns, R.(0), to be 

real-valued, and all identical in form except for angle of pointing. Ve aloe assume 

that al2 have one common lineai polarization. In this ^ase; bj the symmetry, we can 

write 
ßll = ß22 = ß33 e ** = ß55 = X 

ß12 ■ ß25 = \5 
= ^ = °1 

ß13 = ß23 = ß>0 = ß53 - °2 

(A3-2) 

ß15 = *2k ' a3 

For the numerical example, we will consider a case where 

1 > ag > ax > a > o (A3-3) 
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On physical grounds, such an inequality will usually hold for the absolute values 

of the a,. However, as noted earlier in Appendix 1 (Figure 3)> some of the ex may 

be negative, and indeed, the inequality may not always hold, even with the configu- 

ration assumed. However, it would more usually be the case than not with this con- 

figuration, and fortunately, the validity of Eq. (A3-3) for our numerical values 

serves well to simplify the later arithmetic in our illustrative example. 

Then, along with Eqs. (A3-l), we have 

aiM OLK|q|2 ft,,q a
3M 

hi2 a2KM2    a
3hi2    aihf 

r -/°/W2    a/M2 W2W2 a2K>l2   a2K*M2   K*> 

«3|q|2      a2K|q|2 |q|2 aJq|S 

aiM2   a2KK|2     aiK|2 

The eigenvalues, Y> of T are determined by solving det( T -Yl) ■ 0 

q|2 -r  ^jqj2    a2K|q| 

1*1 -y VW 

fa/|q|2 a/|q|2 |K|2|q|2-y   a/|q'2 

\? H 
a

3i*l2   VH8 

X: >-W a ihf VW 

(A3-5) 

A3-2 



ARM-237 

This may be simplified by factoring K (K ^ o) from the third column, and K 

[2 
from the third rowj and also factoring Iql from every row. Defining 

«T 
we then have 

l-x   a, 

a. 

a. 

a_ 

a_ 

a„ 

l-x  OL 

QL   a. 

a   a 
1   2 

a   a 
1    3 

a„   a. 

a   l -     a 
KI
2
  

2 a. 

l-x  a. 

a,_   l-x 

(A3-6) 

(A3-7) 

We note at this point that K only enters through |K| and hence with no loss in 

generality, we may hereafter regard K as real. Next, Eq. (A3-7) can be simplified 

by subtracting the last column from the first, and the fourth from the second: 

1-OL-jt 0 a2 «I °3 

0 1-a -x a2 a3 ai 

0 0 1 X 

"K
2 

a
2 a2 

0 a +x-l a2 l-x °1 

a +x-l 0 a2 ai l-x 

(A3-8) 
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Next, adding the firot row to the last, and the second to the fourth: 

l-a -x 0 a2 ai a3 

0 l-a -x °2 a3 ai 

0 0 1 --*- 
K2 

a2 a2 

0 0 2a2 14« -x «I 

0 0 2a2 2a l 1KX  -X 

Hence, ve can Immediately reduce the equation to 

0 ■ (l-a -x)£ 

°2 

2a, 

2a, 

wyx 

a. 

2a, 

2a    14« -x 

(A3-9) 

If we now subtract the third row from the second, and then add the new second 

column to the third, 

l-# 
a2 »2 

0 ■ (l-a -x)2 0 k*o.-aa_. •X 0 

2a 2 1+20^4« -x 

^2       I 

- (l-a3-x)2(l+ at -2a1-x) 

»2 14-2«^ -x 1 

(A3-10) 

kl-k 



ARM-237 

Thus the five roots are: 

x, ■ Xg ■ 1-QL  (double root) 

x = l+a -20£ x3    3  l 

and x. , x are the solutions to 

I (1 - ^) (1+20^-x) - ko^ «= 0 

I x2-x( 1^+1+20^ ) + K2 (1+aa -KX ) - UK2 aj; «= 0 (A3-12a) 

I 
CU  (K^+i+flo^a ) + y fi^+i+aa^ l2 + 4K2 [taj; - (1+20^+a )] 

X5' 

which can alternatively be written 

lh I     (K^+i+aoL-toL) + Y/TK
2
 - (1+20.-KKJI   + 16K

2
 a2 

V 1  3  - "• L_2J §_ (A3-i2b) 
X5 

We note that in Eq. (A3 -12) the larger eigenvalue is x^ and the smaller is x,.. 

From the latter, since on physical grounds it cannot be negative, we see that we 

must have 

ltd2 - (l+2a «a ) < 0 

(A3-13) 

9  1+2QS +a 
or <    rL—2 
2     k 

Although not obvious by inspection, this latter inequality probably follows from 

A3-5 



the basic assumptions of our configuration. 

Finally, now,  from Eq. (A3 -12b), we note that 

(K2+l+2B14a ) +   K2 - (1+20^+a ) 
Xk> 

ARM-237 

Or, for 

1 

K2 < 1+20^-KX      ,        x^ > 1+20^+a 

> 1+20^+a      ,        X]| > IT > 1+2C* 40^ 

In either case then, 

Xr > 1+23+a > x1 or X- (A3-1U) 

and hence x. is always the largest eigenvalue. 

Recalling Eq. (A3-6) and Sq. (A3-9), we thus have immediately 

(M«-i«rHSx 

,2  .     1 

and, with rationalization of the resulting fraction, 

(K2+i+2a1+<*J -    y(K2+l+2ai+aJ2 - 4K2 [(1+2CK -ta) - JjC^l 

2K2 [l+aatj+a   - kc£] 

(A3-15) 

We may note that for Beam 3, the corresponding radiation efficiency is 

(K?*2*aOL4a ) -    y (l&l+aa +a)2 - 4K2(l+2a -H3 -l<o^) 
^Kl2^ 2(1+20^-1^) 

(A3-16) 

A3-6 
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(It is incidentally readily verified that It Iq.1 < 1 also, as is required 

physically.) 

Let us now assume the equality sign in Eqs. (A3-15) and (A3-l6), i.e., that 

whatever the value of |K|, we have a lossless antenna system so designed that there 

are no cross-couplings or losses other than fundamentally inherent and implied by 

the beam overlaps and the conservation of energy limitations. 

b) Optimization of Diversity Operation 

We now refer to the optimization problem discussed in Section 8. We will 

assume that the matrix, G, of beam correlation factors, G,  (defined in Eq. 50) has 

the same kind of symmetries that the ß-matrix had. This is basically the assump- 

tion that g(o) in Eq. (50) is circularly symmetric, and that Beam 3 is pointed at 

its center of symmetry. This assumption is not a particularly accurate descrip- 

tion of the tropospheric scatter fields, which display a different scale of varia- 

tions in the vertical than in the horizontal directions. However, since our pur- 

poses here are purely illustrative, we believe the simplification in resulting 

mathematics justifies the symmetry assumption on g(ö). The point is that with 

this assumed symmetry, we can immediately note symmetries in G . which are almost, 

but not completely analogous to those in Eq. (A3-2)j we write these as 

it 

Km  = h 33   o 

GH = G22 " °Uk ■ G55 = hö 

G12 = G25 
C Glf5 = °1^ " \ (A3-17) 

G13 = G23 = Gk3 = G53 ' S 

G15 = G2l* = h3 
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Hence, we can determine the eigenvalues, < J.   \ , for the L-matrlx (Eq. 5l) In 

almost direct analogy to those determined for T. Thus, if we define 

*1 
h 
h 

h2" 
h 

s h (A3-l8a) 

K K 2
ho 

and 

K h\S 
(A3-l8b) 

we obtain as the solutions for the eigenvalues 

A ■ 4 - ho M2 yi= hl M2 * ■ hl |«f ^-V (A3-19a) 

4-hoM23r3"hoN2 (1+v2V (A3-19b) 

jC yu 

.1« 
;K'2+l+2h1+h ) +  y(K,2+l+2h1+hJ2+UK'2  [^-(1+2^+^)] 

(A3-19c) 
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In these, |q  is now assumed to be given by the equality sign in Eq. (A3-I5) 

(in terms of K, not yet specified). Furthermore, the error rate function F(z) 

to be minimized for optimum performance (Eq. 1*7), is 

F<z) " I detU+2L) (A3-2C)> 

(z will be further specified below.) With L Hermitian, one knows that a diagonaliz- 

ing unitary matrix exists for L, say T, such that 

T+T - I (A3-21) 

and 

T+LT = JL 

where JL is the diagonal matrix 

JL - (A3-22) 

But then, since det T ■ 1, 

det(l+zL) = det(T+IT + zT+LT) «* det(l+z/) 

"fr (l+«/J 
i=l     x 

Hence, 

F(z) -± 

(A3-23) 

i=l     x 

z = pw~ > N ■ noise level in individual receiver (same for all receivers) 
o 

A3-9 
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and ve have F(z) as an explicit function of K through Eqs. (A3-19) and. (A3-15). 

To maximize the resulting expression algebraically is tedious. Therefore, ve may 

take vhat may be regarded as a typical set of numbers for a , a , a    (see Appen- 

dix l), and another typical set for h , h , h,, h_, h'\ With these, w«. wil: plot 

in Figures 7 and 3 the variation of F(z" AE t function of K foi variouE assumed 

average 3ignal-noise ratios. 

The particular numerical values taken are for gaussian beam patterns, in the 

configuration of Figure 5, vhere Beam 3 intersects the other beams at their 33d*b 

points. From Figures 2 and 3» we then obtain 

ax ■ 0.^9 

a2 - 0.2^ 

a = O.06 

For the intensity pattern g(ö), we assume a form 

■(f) 
1 , 1 3- 00 

vhere 0,  normalized to the same angle coordinates used in Figures 2 and 3>its in 

effect the source "spread" normalized to the beam vidth of our individual beams. 

§      The value Q determines the actual power level of the received signals. The values 

I 
I 
I 
' A3-10 
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•  - 1 o 

tt 

h   * 
0 ' 0.157^ % 

i 

h   * o • 0.06kk Q o 

t 

V ■ 0.010+2 Q 
0 

V • 0.0833 Q0 

V » 0.0306 Q 

Ö » 2 
o 

hQ « 0.2697 Q0 

h «= O.1832 Q 
o        o 

h^ = O.O98U Qc 

h^ * 0.1632 Qc 

h' « 0.052lf Q 

The individual JL.  will thus be proportional to Q . Thus, for each term in 

Eq. (A3-210, 

z\  ^äT^i 
o 

where JL    is the value of the eigenvalues if Q ■ 1 is taken in defining the elements 

" Qo of the G-matrix. Clearly, furthermore, h T= is the signal-noise ratio which would 
o 

appear in the receiver associated with the central beam if no other beams were pre- 

sent (and \YT| q  =1 were involved). Thus, let us redefine 2 as the latter signal- 

noise ratio, and rewrite Eq. (A3-25) in the form 

z = h O 2N (A3-25a) 

F(z) -| 

&HW) 
(A3-25b) 

A3-H 
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In Figures 6-8 have been plotted the radiation efficiencies and F(z) as 

I 12 functions of K . The latter variable has been graphed logarithmically, to bring 

out the essential features. In almost all cases, the values plotted for K  > 0.1 

are relatively close to those for |K|  ■ 0 (the latter have been indicalcu. via 

arrows). In Figure 6 are given the radiation efficiencies, q| , for the four outer 

beams, and jK| |q  for the central beam. It is clear that for |K|  »0, the 

central beam is effectively omitted, and the residual limitation on Iql is the 

I 12 interaction only among the four outer beams. Likewise, for K  very large, 

|KJ  q  >1 while |q|  >0, and in effect only the central beam is present. In 

Figures 7 and 8 are given plots of the error rate, ^F(z), for selected values of 

z (0, 5, 10, 15, and 20 dB»), and for 0=1 and 9=2, respectively. The ordinate 

is broken, since for the range of z taken, the error rates vary over several decades, 

whereas it seems desirable to plot all the curves on one graph. 

The most striking observations from Figures 7 and 8 are that there is an opti- 

mum value for |KJ , generally around JK| =0.7, and somewhat independent of z or 

0 ;  that the error rate curves have a broad minimum around the optimum, so that the 

choice is not critical; that, indeed, for the configuration assumed, and the signal- 

noise ratios examined, the variation of error rate is by no more than a factor of 2 

over the range 0.1 < KT <  1. Changes in error rate by a factor of 2 are equivalent, 

due to the exponential dependence of error rate on signal-noise ratio, to very minor 

changes in signal-noise ratio. Thus one may especially notice that in the configura- 

i 12 
t.ion examined, the optimum presence of the center beam (optimum |K| ) is very little 

better than the complete absence of the center beam ( |h| = 0). That is, the added 

losses 'due to cross-coupling) in the power received with the outer beams, when the 

center beam is active, almost completely compensate for the additional diversity 

advantage of adding this center- beam,  (indeed for the 0=2 case, the optimum 

II2 ! 12 K| for small signai-neise ratio is in fact |K| = 0.) 

A3-12 
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It is known that for sufficiently low error rates (sufficiently high signal- 

noise ratio), the added diversity advantage of having five rather than four beams 

must appear. This is indicated by the decreasing width of the minimum as signal- 

noise ratio increases. However, for our example, the error-rate at which this 

diversity advantage appears is apparently far below those which appear in our 

curves, which in turn are typical of operational requirements. 

One may also question whether the beam overlap factors used here are realistic. 

We have not, in all this, specifically derived the related cross-couplings between 

the feed-lines. In an actual design, as mentioned earlier, the design engineer 

might attempt to modify the feed structure to reduce such cross-couplings, in a 

way which would not alter the main lobe pattern but might drastically alter the 

side-lobes and hence the overlap factors. (One may also question, on the other 

hand, whether this is really ever done in designing an array for receiving only} 

the penalties are obvious for a transmitting array, but it is not apparent that 

they have ever been regarded seriously for receiving-only arrays.) 

At any rate, this example should be taken only as an illustration of tfetc kind 

of effects which have been imputed frun the mathematics, and as an indication of 

the kind of detailed investigation which should be undertaken in connection with 

any angle-diversity designs. 

A3-13 
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ABSTRACT 

The analysis in Part I has been extended to the characterization 

of the scattering matrix for a multiple-beam antenna system.     The 

constraints implied by beam overlap,  and the principle of conservation 

of energy,   are derived.     The more specific properties are given for 

antennas further characterized as lossless,   reciprocal systems.    Some 

directions for further useful research are pointed out. 
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].    Summary of Prior Results 

In Part I  ,   the principle of conservation of energy was applied to a multiple 

beam antenna (M beams).    An Hermitian positive semi-definite MxM matrix,  ß,   of 

beam-overlap factors was defined,   and a set of M beam excitation factors,   4q,\ , 
I , th ^ for which I q,  |     represent the radiation efficiency for the k     beam.    Another MxM 

Hermitian positive semi-definite matrix,   r,   was defined,   with its elements given 

bv 

rkj = % ^ *j <*> 

Furthermore,   the antenna  system,   considered as a junction among the M feed-lines 

(each excites exactly one of the beams),   is characterized by an MxM "scattering- 

matrix-,   S,  whose elements S   . represent the mutual coupling coefficients (and 
kj 

self-reflection coefficients) among the set of feedlines.     For a given set of incident 

waves in the several feed-lines,   with amplitudes f x.T  characterized as a column 

vector,  x,       the set of reflected waves is denoted by another set |"y,"\,   or an 

equivalent column vector,   y, 

y = Sx (2) 

The specmc result obtained from applying the principle of conservation of energy 

involves the eigenvalues and eigenvectors of T.    Since T is Hermitian,  and positive 

semi-definite,   its M eigenvalues are known to be positive real or zero; we denote 

by   y  the diagonal matrix (i.e.,   matrix with non-vanishing elements onlyon the 

main diagonal) whose diagonal elements are these eigenvalues of r» 

0 

v      I 

yM 

S.   Stein,   ''On Cross-Coupling in Multiple-Beam Antennas,   Part I,   Radiation 
Efficiencies (With Applications to Angle Diversity), " ARM No.   237,   3 March 1961. 
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The y. ,  y.   > 0 are the aforementioned eigenvalues.    Furthermore,  the eigenvectors 

of F form a mutually orthogonal set (or,   for a degenerate eigenvalue,   can be 

constructed as such),   and can further be normalized to unit length.    Within a lack 

of uniqueness discussed in Appendix 1,   one can define a unitary matrix,   U,  whose 

columns are the respective orthonormalized eigenvectors of F,   and which has the 

properties 

U  U = I (I is the identity matrix,  I.. = ö..) 
J J 

U+ru sy (4) 

r = UyU+ 

The fundamental equation derived in Part I (Part I,   Eq.   36) was the inequality 

z+(I - y)z  > z+(U+S+SU)z (5) 

where the equality sign holds if and only if a lossless antenna system is being 

considered.    The immediate deduction from Eq.   5 was that all the eigenvalues of T 

are restricted by the inequalities 

l>yk>0 (6) 

Most of Part I was devoted to exploring the consequences of Eq.   6,  with respect to 

limitations imposed by beam-overlaps (by the form of ß) upon the achievable 

radiation efficiencies.    Once the latter are chosen,   consistent with Eq.   6,   the y« 

are completely specified within the assumed beam patterns. 

Again we use the notations,  for any complex matrix A, 

A     - complex conjugate of A; (A   ).. = A  .. 

T T A     s transpose of A: (A   ).. = A.. 
ij   Ji 

+ +     • A = conjugate transpose of A; (A ).. = A .. 



ARM-238 

In this report,   we will explore the further implications of Eqs.   5 and 6, 

with respect to characterizations of the scattering matrix.     We will provide a 

rather complete characterization for the very important,   most common case of a 

lossless reciprocal antenna system,   which includes all antenna systems comprised 

of essentially passive lossless elements.     For more general systems,   we will only 

be able to indicate a partial characterization,   which includes all the implications of 

conservation of energy and the beam specifications,  but apparently always requires 

other constraints (such as losslessness,   reciprocity) to complete the description 

of the system. 

2.    General Solution for S 

In Eq.   5 (along with Eq.   6),   we recognize the I-y is a diagonal matrix with 

elements positive real or zero.     We can thus define a diagonal matrix,   A,  whose 

elements are the set of positive real or zero numbers 

A.   =Vl - y.  > 0 k = 1,   . ...  M (7) 

Akj = \ \. (8a) 

rX, 0 

,0 'XM 

(8b) 

We note 

A = AT =. A" --■■ A+ (8c) 

Y/e can then write 

I - y - AZ (9) 

and Eq.   5 becomes 
•) + 

z   A   z > z   (US  SU)z (10) 

Now in Part I,  it was shown that with all other relevant parameters fixed, 

the maximum radiation efficiencies for all the beams are attained when the largest 

of the y.  if equal to unity (the largest value compatible with Eq.   6).    Both the 

diagonal matrices (I-y) and A would then have some of their diagonal elements 
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zero (as many such elements as the order of degeneracy of the largest eigenvalue). 

To avoid the mathematical complications necessitated by accounting for this effect, 

we will assume in this section that none of the A.,   vanish (all y.   are less than unity). 

On this basis,   A has a well-defined inverse A     ,   which we will use.    However this 

inverse will be seen to be absent from the final result,   and one will be able to 

argue then that the result applies as well to the limiting case where some of the 

\   do vanish.    In Appendix 2,   we further indicate by paralleling the derivation in 

this section,   a more rigorous demonstration of this assertion. 

Now,   assuming A       exists,   let us define a new matrix 

T = SU A"1 (11a) 

S   =  TAU+ (lib) 

so that. Eq.   10 becomes 

z+A2z > z+A T + TAz (12) 

Defining a new (equally arbitrary) vector 

6 = Az (13) 

we can further write the inequality as 

£ + £>f+T+T£ (14) 

Clearly,   the matrix T   T is Hermitian,   and positive definite,   since S  S is positive 

definite (shown in Part I).     Thus it can always be written in the form 

T+T = P+M2P (15a) 

where P is an appropriate unitary matrix 

P+P - 1 (15b) 

2 2 
and pi    is a diagonal matrix whose diagonal elements,  ft. «   are positive real or 

zero.     The requirement imposed by Eq.   14 is then readily observed (see,   e. g. , 

Appendix 2) to be simply that 

Mk < I for all k (16) 

Since the latter statement is the totality of information contained in the conservation 

of energy equation,   Eq     14,   we see that the class of all permissible solutions for 
+ 2 

T   T is hence given by Eq.   15,   where P is any unitary matrix,   and pi    any diagonal 

matrix satisfying Eq.   16. 
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It immediately follows by ''factoring" Eq.   15a that within this class of 

solutions,   T itself has as its most general form 

T  -  WfxP (17) 

where W is again any unitary matrix 

W+W = I (18) 

Using Eq.   11,   the corresponding general class of solutions for S,   consistent with 

conservation of energy,   is just 

S = WjiPAU+ (19) 

In the general class of solutions just given,   only the diagonal matrix A is 

completely specified (by our choice of the multiple beams,   and the choice of 

radiation efficiencies),   and the matrix U partially specified (see Appendix 1). 

We can expect,   and will discuss below,   that the arbitrariness of choice of the 

unitary matrices P and W has physical implications concerning certain freedoms 

of choice in designing the antenna system to drive the specified set of beams.     The 

inequality which specifies /^,   however,   is a source of difficulty.    In the lossless 

case,   of course,   Eq.   16 is to be taken with the equality sign,   and we will see 

below that this greatly reduces the generality of possible forms for S. 

In the more general lossy case,   the inequality signs in our equations,   Eq.   5 

for example,   could similarly be replaced by equality signs if a term were added 

which accounted for all losses within the antenna system (considered as a junction), 

i. e.     Eq.   5 rewritten as 

z+(I - y)z = z   (U S+SU)l + L (20) 

where L is a term accounting for all the losses.    If,   in fact,   such losses were all 

ohmic,   L would be a Hermitian quadratic form in z, 

L = z+(U+L   U)z (21) o ' 

(where L    is the Hermitian matrix of the quadratic form giving the losses,   when 

the variable is the set of incident waves in the feedlines).    If L,   or L  ,   were known, 

one could presumably make corresponding specific statements about pi,   much like 

the ones to be made below in the lossless case.    If the losses were due to specific 

''pads'' inserted into the network,   one might be readily able to describe such a 

matrix,  under more general lossy conditions,   however,   it is not apparent that 

enough is generally known about the quadratic form to make use of it.    Results in 

the remainder of this paper will be confined to the lossless case. 
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Other specializations can be made,   not related to the lossless vs.   lossy 

issue,   for example the assumption of reciprocity.    Combined with losslessness, 

below,   this yields a particularly interestingdelineation on the form of S.     The 

characterisation assuming reciprocity only,   however,   does not appear to be useful 

and again v/ill not be cited explicitly.    As we comment in our conclusions,   there 

thus seem to be a number of interesting problems yet to be explored in this general 

direction of system constraints.     These we necessarily regard as beyond the scope 

of our currently achievable results presented in this paper. 

4.    Lossless Reciprocal Systems 

By far,   the widest class of antenna systems can be regarded as possessing 

both the properties of reciprocity and losslessness. 

For a lossless system,  the equality sign holds in Eq.   16,   and we have 

ixZ = I (22) 

Since y.     ß   ,  \x itself can be replaced by any unitary matrix; the resulting product 

WfiP in Eq.   17 becomes simply the product of three arbitrary unitary matrices,  and 

leads to the simple statement 

T - any unitary matrix (23) 

(This result is also apparent by simply setting pi     = I in Eq.   15).   Thus,   the property 

of losslessness reduces to a statement 

S = QAU+ (24a) 

where Q is any unitary matrix, 

Q+Q - I (24b) 

In order for the network to be also reciprocal,   we require 

S = ST (25) 

(note,   since S is complex,   this is not Hermitian symmetry) 

Clearly arbitrary choices of Q will not satisfy this requirement,  and hence would 

generally imply non-reciprocal networks.    (Aside from the difficulties in specifying 

particular kinds of non-reciprocity,   if one may use such vague terminology,   it was 

also pointed out in Part I that such systems are basically irrelevant in the important 

problem of analyzing receiving systems in terms of equivalent transmitting 

properties. )    Now,   to satisfy the reciprocity requirement in Eq.   25,  the class of 

solutions in Eq.   24 must also obviously satisfy the relation ^ 
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QAU+ = (QAU + )T U  AQ 

If we define a new matrix,   F,   by 

Q = U*F 

then F must also be unitary, 

I 

T 

F+F 

and satisfy,  from Eq.   26, 

FA = AFT 

In :erms of components,   since A is diagonal,   Eq.   28b becomes 

0 F. .(X. X.) 

(26) 

(27) 

(28a) 

(28b) 

(29) 

0. Thus if all the diagonal elements are unequal,   F I. e. ,   either A.  = X. or F.. 
1        J ij 

will itself be any diagonal unitary matrix.    In the more general case,   if some of 

the X. have equal values (corresponding to degenerate eigenvalues of r),   off- 

diagonal elements are possible,   at intersections of the corresponding rows and 

columns.    If,   without loss in generality,   we assume the X. for the moment to be 

ordered (grouped),   then clearly the non-vanishing elements allowed by Eq.   29 must 

be clustered such that F will be a partitioned diagonal form, 

/- 

F s 

0 

(30) 

\° n 

where the size of the    urtitionu,   F.,   is equal to the order of multiplicity of the 

corresponding eigenvalues.    Within this context,   Eqs.   28 simply now require that 

the individual partitions,   F.,  be unitary and symmetric matrices (within their 

dimensionality). 

However,   it is well known that any cyua. »trie matrix can always be factored, 

in an infinite number of ways,   as the product of some matrix am.' ;ts transpose, 

i. e. ,   for each F. we can write 
l 

T F.  = V.V. 
l li 

(31) 
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Furthermore,   to satisfy the unitary property of F.,   it is sufficient to choose only 

those factorizations,   V.,   which are themselves unitary 

V+V.  a I 
l    l 

(32) 

(it is readily shown that üuch V. exist).    Making any such factorization for the 

F.,  we can then obviously write 

F - VVT (33) 

where V is a diagonal partitioned unitary matrix of form similar to F, 

V = V. 

Then S has the form 

S = QAU+ = UVFAU+ = U>,CVVTAU+ 

(34) 

(35) 

But,   finally,   any diagonal partitioned matrix such as V commutes with A (analogous 

to Eq.   Al-8) and thus we can always write this S in the form 

S ■ U*VAVTU+ 

= (U  V)A(U V) 

(36) 

But (Appendix 1),   with V unitary and partitioned as shown,   U  V is simply u'  where 

U, is some other unitary matrix which diagonalizes T;   i.e. ,   within the lack of 

uniqueness of the matrix U,   our most general solution for S in the lossless re- 

ciprocal case has the form 

S = U  AU (37) 

5.    Physical Significance of the Lossless,   Reciprocal Characterization 

For a given multiple-beam design,   and decision on beam radiation efficiencies, 

the matrix A is completely fixed,   and the unitary matrices,   U,   which enter Eq.   37 

are fixed to within certain quasi-diagonal forms (Eq.  Al-7).    It is useful to 

interpret the meaning of this arbitrariness still inherent in the specification of 

S via Eq.   37. 

8 
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We recall,   Eq.   I,   that S relates the set of reflected waves in the feed-lines 

to the set of incident waves, 

y = Sx 

Using Eq.   37,   this can be written 

+ 
y-U   AU x 

Or 

UTy - AU+x (38) 

Let us define "canonical" incident and reflected waves,  y' and x' by 

x'   a U+x      ;      x a Ux' 

y' = UTy   ;     y a U*y' (39) 

Then also 

y' = Ax' (40a) 

and in components 

yk a Xkxk (40b) 

But what,   in fact,  are these "canonical waves"?    Well,   first the unitary matrix U 

in Eq.   39 may be regarded as a transfer matrix for a lossless "black box",   with 

M ports on each side,   such that putting in the i| x' \ at one end gives thef x,l at 

the other (with no reflections),  and vice-versa,   if the reflections from the 

antennaf y, j are traveling back towards this box,   the set fy! i emerges without 

losses.    Obviously such a "black box"  satisfies all our conservation of energy 

limitations,  and we should not be surprised to find this degree of flexibility 

in our final equations.    (One can dispute whether such a lossless,  reflectionless 

black box is realizable; our equations only say that if realizable,  it can be 

inserted.) 

Further,  each of the x'   represents a particular weighted sum of the actual 

incident waves 

xk a I Ukjx. (41) 
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and inversely,   given the setVxM- , 

J 

The  set of excitations, £x. 1 ,   corresponding to one of the x' non-vanishing and all 

others zero,   obviously defines  some combination of beams,   i. e. ,   some radiation 

pattern.    Thus,   each of the x< corresponds to exciting some particular radiation 
J      (1) pattern,   and (referring to Pairt I      ) it is readily observed that since the weightings in 

Eq.   42 are from a unitary matrix which diagonalizes  T,   the set of corresponding 

"canonical" radiation patterns (beam combinations) are in fact orthogonal to each other. 

Since they are orthogonal,   their  "feed-lines" are decoupled; as shown in  Eq.   40b,   a 

particular x' gives rise only to the corresponding "reflection",   y'. in its own feed-line. 

The further arbitrariness in U corresponds to the statement that certain "canonical" 

pattern excitations are equivalent as far as the reflections produced (equal X, ),   and 

hence as far as efficiency in radiating the energy incident in the feeds.    Thus the 

"canonical" pattern representation is not unique; in particular,   even if all the X,   were 

unequal,   phase shifters in the lines (or equivalently,   shift in choice of phase references) 

would in no manner change the basic energy flow relationships.    It is also interesting to 

note that the eigenvalues y (of T) are directly interpretable in these  canonical   excitations, 

in terms of the reflection coefficients,   through the relations 

K = \/1 ~ 
It is not clear to what extent the  "canonical" patterns may be of direct physical 

interest.    Presumably,   our physical interest lies in the set of beam patterns which we 

specified at the outset.    Although Eq.  42 also can be regarded as describing how to 

achieve this set by simultaneous excitation at a number of terminals,   each of which is 

decoupled from the other,   the totality of waves for a single desired beam involves all 

terminals,   and no obvious engineering advantage ensues.    What appears to be more to 

the point is a study,   within some specific systems applications of multiple-beam 

antennas,   of the possibilities for finding a "minimum" S in some sense.    The important 

result is that the character of S is largely fixed by the beam design,   and it could be 

important to an antenna design engineer to understand what aspects of the cross-couplings 

(elements of S) cannot be changed without altering the beam structure. 

6.     Need for  Further Study 

The results of this paper can only be regarded as a first step in character- 

izing the cross-couplings within multiple-beam antenna systems.    It appears that 

10 
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more explicit relationships ought to be determined,   probably in relation to 

specific  system applications,   in order to arrive at the really desirable point for 

the antenna design engineer:    to determine what limitations he faces a priori in 

trying to modify an antenna structure so as to reduce cross -c ouplings without 

exceeding radiation pattern tolerances specified by his customer.     For example, 

in Part I it was pointed out that much of the cross-coupling appears to be controlled 

by side-lobe effects,   where perhaps more freedom is possible.     The important 

factor would be the detailed nature of the connection,  and this we do not claim to 

have truly elucidated in this initial formulation. 

What this paper has achieved,   we believe,   is to make explicit the basic 

mathematical structure which can be a starting point for such further research. 

Over and above such additional research in even the "simple" lossless,   reciprocal 

case,  lie further explorations pointed out earlier in connection with such system 

properties as "lossy",   "non-reciprocal",  and the like. 

11 
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APPENDIX 1:    Lack of Uniqueness in Unitary Diagonalizing Matrices 

Consider an MxM Hermitian matrix T.    Its eigenvectors form a mutually- 

orthogonal set,   or,  for a degenerate eigenvalue can be constructed as such (the 

Gram-Schmidt procedure),     Further,   the eigenvectors can be normalized to unit 

length.     Thus,   if *        denotes the k      orthonormalized eigenvector (with components 
(k) *        ,  m - 1,   . . . ,   M),  we can write the matrix statement 
m 

t(k)+t<J) = fi (Al-l) 

(kV 
A unitary matrix U with the set    *     •   as its columns then has the property of 

diagonalizing T (Eq.   4) 

U+rU = y (Al-2) 

However,   any eigenvector can still be multiplied in all its components by any 

complex number of unit magnitude,   i. e. ,  by a factor of the form exp (iö),   without 

affecting the statement in Eq.   Al-l.     The corresponding effect on the construction 

of U is that U in Eq.   Al-2 can be replaced by any unitary matrix,   V,   of the form 

V = UD (Al-3) 

where D is a diagonal unitary matrix with the form 

/exp(i01) 0 

exp(i02) 

D -    | exp(i03) (Al -4) 

• exp(i0M)/ 

and where the 6,,   6?.   . . .   0M are quite arbitrary.     The matrix D clearly has the 

properties of being both unitary and symmetric, 

T D     = D 

D+D = I (Al-5) 

where I is the identity matrix,   whose elements are 6... 

Next,   suppose r has a degenerate (multiple) eigenvalue.    If the order of 

degeneracy (multiplicity) of a particular eigenvalue is r,   then the secular equation 

Al-l 
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determining the corresponding eigenvectors gives additional r-1 undetermined 

coefficients (i. e. ,   in addition to the usual indeterminancy within a complex scale 

factor for the vector as a whole).     One is then free to choose these coefficients to 

form r linearly independent eigenvectors (automatically orthogonal to the eigenvectors 

corresponding to any  of the other eigenvalues),   and in particular usually to construct 

them as a mutually orthogonal and normalized set (e. g. ,   the Gram-Schmidt 

procedure) of r eigenvectors,   which can then in turn be used in constructing U. 

However,   given one such set,   any other set of r linear combinations of these, 

constructed so as to provide orthonormality will also be suitable for constructing U. 

An orthonormality-preserving transformation from one subset to another is,   of 

course,   just an arbitrary unitary transformation in the subspace spanned by the 

eigenvectors of the particular eigenvalue.    I.e. ,   in the case of degenerate 

eigenvalues,  we must extend Eq.  Al-3 by the statement that more generally,   given 

any U,   we can equally well satisfy Eq.   Al-2 by any 

W = UD (Al-6) 

where D has the quasi-diagonal partitioned form 

0 

D     | " D^j j (AJ-7) 

'■fcimy, 

The j      partition,   D     ,  is any unitary matrix of order r. X r.,   where r. is the 
th J        J J 

order of degeneracy (multiplicity) of the j      different eigenvalue of T,   in some 

assumed ordering of the eigenvalues.    In this form,   the columns of D**" include the 

arbitrary phase factors outlined in Eq.   Al-4; in fact for any non-degenerate 

eigenvalue,  the corresponding partition D      is only a single element of general 

form exp (iö.)- 

It is to be noted that if the matrix y is represented in a partitioned form 

similar to Eq.   Al-7,   the partitions are a set of identity matrices,   multiplied 

by scalars, 

Al-2 



ARM-238 

V 
V 

(Al-8) 

y  I 

and hence y commutes with any D matrix of the form given in Eq.   Al-7, 

yD = Dy (Al-9) 

Al-3 
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APPENDIX 2     General Solution for S in Singular Case 

If some of the X,   in Eq.   7 are zero,   then A       is strictly undefined,   and we 

cannot proceed as in Eq.   11a.    However,   we can certainly still write Eq.   lib, 

S = TAU" 

to introduce a new matrix T.    If some of the diagonal elements of the diagonal 

matrix of A vanish,   then it is readily observed the.t in the matrix multiplication of 

Eq.   A2-1,   the corresponding columns of T (whatever their values may be) never 

contribute to the elements of S; likewise the corresponding rows of U    (or columns of 

U) never enter.    This is really the implication of the singularity in A,   that the new 

unknown matrix T can never be completely specified from a knowledge of S.   However, 

since S rather than T is our true objective,   this is no hindrance to our solution. 

Further,   as in Eq.   13,   we can also introduce a new vector J, 

t = Az 

£+ = z+Af (A2-2) 

in which,  by the property of some of the X.   vanishing,   the corresponding elements 

of J always vanish.    Thus this f is arbitrary only in those elements  £, ,   corresponding 

to non-vanishing X, . 

We thus again derive the inequality of Eq.   14. 

t+t>t+T+T£ (A2-3) 

But now,   due to the zero elements just mentioned in the class of otherwise arbitrary 

J-vectors,   this inequality (as is readily observed by inspection) in fact specifies 

limitations on all columns of T,   except exactly those already mentioned as being 
A -f.       -I- + 

irrelevant to the form of S.    The matrix T   T is always Hermitian,   since (T   T)   = T   T, 

and positive definite since Z   T   TZ - (TZ)' (TZ) > 0, so a representation as in Eq.   1 5 

is always possible 

TfT s P 
+
 M

2
P (A2-4) 

where P is again unitary,   and ß    diagonal with elements positive real or zero.    But 

now (inserting a step previously left to the reader between Eqs.   15a and 16), 

Eq.   A2-3 becomes 

f
ff ^£+PVP£ (A2-5) 

We can now introduce the transformation 

7? ' P£ (A2-6) 

A2-1 
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where T) can be any arbitrary vector     lovidcc.   that in the inverse transformation 

t = P% (A2-7) 

the required elements of f always vanish.     This implies that for each arbitrary r\, 

the appropriate rows of P    (columns of P) must always be such as to produce this 

vanishing of the required elements of S.    But,   regarding this as a specification 

to be satisfied by any P providing a solution through Eq.   A2-4,   the inequality of 

Eq.   AZ-5 becomes just 

77  T] 2l T)  ix   rj (A2-8) 

Or,   again, 

ju£ < 1     for all k (A2-9) 

We can certainly again factor Eq.  A2-4,   to give 

T = WMP 

where W is any unitary matrix; and thus from Eq.  A2-1,   write (exactly as in Eq.   19) 

S = WMPAU
+ (A2-10) 

Finally,   we observe that the peculiar limitation on certain columns of P 

(especially peculiar-looking now since it is related to the form of an arbitrary 

vector,   rj,   which does not enter our final equations) is in fact irrelevant since 

P enters only through the product PA,   and it is exactly these columns of P which 

do not contribute to the computation of S because of the vanishing of the corresponding 

V 
We have thus demonstrated our assertion that the result,   Eq.   19,   holds 

without change in the limiting case where A is singular through the vanishing 

of some of its diagonal elements. 
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722 Cherry Street,   N. W. 
Atlanta,   Georgia 
Attn;   Mrs.  J. H.   Crosland,   Librarian 

U 102 Harvard University 
Technical Reports Collection 
Gordon McKay Library 
303 Pierce Hall 
Oxford Street,   Cambridge 38,   Mass. 
Attn:   Librarian 
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U 54 Harvard College Observatory 
60 Garden Street 
Cambridge 39,   Mass. 
Attn:   Dr.   Fred L.   Whipple 

U 103 University of Illinois 
Documents Division Library 
Urbana,   Illinois 

U 104 University of Illinois 
College of Engineering 
Urbana, Illinois 
Attn:   Dr.   P. E.   Mayes,   Department of Electrical Engineering 

U 169 Illinois Institute of Technology 
3301 S.   Dearborn Street 
Chicago 16,   Illinois 
Attn:   Dr.  George I.   Cohn 

U 240 Illinois Institute of Technology 
Technology Center 
Department of Electrical Engineering 
Chicago 16,   Illinois 
Attn:   Paul C.   Yuen 

Electronics Research Laboratory 

U 22 The Johns Hopkins University 
Homewood Campus 
Baltimore 18,   Maryland 
Attn:   Dr.  Donald E.   Kerr,   Dept.  of Physics 

U 105 The Johns Hopkins University 
Applied Physics Laboratory 
8621 Georgia Avenue 
Silver Spring,   Maryland 
Attn;   Mr.   George L.   Seielstad. 

U 228 University of Kansas 
Electrical Engineering Department 
Lawrence,   Kansas 
Attn;   Dr.  H.  Uns 

U 68 Lowell Technological Institute 
Research Foundation 
P. O.   Box 709,   Lowell,   Mass. 
Attn:   Dr.   Charles R.   Mingins 

U 32 Massachusetts Institute of Technology 
Research Laboratory of Electronics 
Building 26,   Room 327 
Cambridge 39,   Mass. 
Attn;   John H.   Hewitt 
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U 26 Massachusetts Institute of Technology 
Lincoln Laboratory 
P.O.   Box 7 3 
Lexington 7 3,   Mass. 
Attn;   Mary A.   Granese,   Librarian 

U 34 McGill University 
Montreal,   Canada 
Attn:   Prof.   G. A.   Woonton 

Director,   The Eaton Electronics 
Research Laboratory 

U 107 University of Michigan 
Electronic Defense Group 
Engineering Research Institute 
Ann Arbor,   Michigan 
Attn;   J.A.   Boyd,   Supervisor 

U 79 University of Michigan 
Engineering Research Institute 
Radiation Laboratory 
912 N.   Main Street,   Ann Arbor,   Michigan 
Attn:   Prof.   K. M.   Siegel 

U 37 University of Michigan 
Engineering Research Institute 
Willow Run Laboratories,   Willow Run Airport 
Ypsilanti,   Michigan 
Attn:    Librarian 

U 108 University of Minnesota 
Minneapolis  14,   Minnesota 
Attn:   Mr.  Robert H.   Stumm,   Library 

U 194 Physical Science Laboratory 
New Mexico College of Agriculture and Mechanic Arts 
State College,   New Mexico 
Attn:   Mr.  H.W.  Haas 

U 39 New York University 
Institute of Mathematical Sciences 
Room 802,   2 5 Waverly Place 
New York 3,   New York 
Attn;   Professor Morris Kline 

U 96 Northwestern University 
Microwave Laboratories 
Evanston,   Illinois 
Attn:   R. E.   Bean 
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U 78 Ohio State University Research Foundation 
1314 Kinnear Road 
Columbus 8»   Ohio 
Attn:   Dr.   T. E.   Tice 

Department of Electrical Engineering 

U 109 The University of Oklahoma 
Research Institute 
Norman,   Oklahoma 
Attn:   Prof.   C. L.   Farrar,   Chairman 

Electrical Engineering 

U 45 The Pennsylvania State University 
Department of Electrical Engineering 
University Park,   Pennsylvania 

U 185 University of Pennsylvania 
Institute of Cooperative Research 
3400 Walnut Street,   Philadelphia,   Pa. 
Attn:   Department of Electrical Engineering 

U 48 Polytechnic Institute of Brooklyn 
Microwave Research Institute 
55 Johnson Street,   Brooklyn,   New York 
Attn:   Dr.  Arthur A.   diner 

U 97 Polytechnic Institue of Brooklyn 
Microwave Research Institute 
55 Johnson Street 
Brooklyn,   New York 
Attn:   Mr.  A.  E.   Laemmel 

U 184 Purdue University 
Department of Electrical Engineering 
Lafayette,   Indiana 
Attn:   Dr.  Schultz 

U 176 Stanford University 
W. W.   Hansen Laboratory of Physics 
Stanford,   California 
Attn;    Microwave Library 

U 110 Syracuse University Research Institute 
Collendale Campus 
Syracuse 10, N. Y. 
Attn;   Dr.   C.S.  Grove,   Jr., 

Director of Engineering Research 

U 309 Technical University 
Oestervoldgade 10 G 
Copenhagen,   Denmark 
Attn;   Prof.  Hans Lottrup Knudsen 
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U 186 University of Tennessee 
Ferris Hall 
W.   Cumberland Avenue 
Knoxville  16,   Tennsesee 

Ulli The University of Texas 
Electrical Engineering Research Lab. 
P.O.   Box 8026,   University Station 
Austin 12,   Texas 
Attn:    Mr.   John R.   Gerhardt 

Assistant Director 

U 51 The University of Texas 
Defense Research Laboratory 
Austin,   Texas 
Attn:   Claude W.  Horton,   Physics Library 

U 132 University of Toronto 
Department of Electrical Engr. 
Toronto,   Canada 
Attn:   Prof.  G.   Sinclair 

U 133 University of Washington 
Department of Electrical Engineering 
Seattle 5,   Washington 
Attn:   G.   Held,   Associate Professor 

U 187 University of Wisconsin 
Department of Electrical Engineering 
Madison,   Wisconsin 
Attn:   Dr.  Scheibe 

U.S.  Naval Research Lab. 
Washington 25,   D. C. 
Attn:   A. B.   Marston 

U.S. Army Signal Res.  and Dev,  Labs. 
Belmar,   New Jersey 
Attn:   A. J.  DiGiacomo 

U.S.  Army Signal Res.   and Dev.   Labs. 
Belmar,   New Jersey 
Attn:   Boaz Gelernter 

U.S.  Navy Electronics Lab. 
San Diego 52,   California 
Attn:   B.I.   Small 

RADC (Attn:   A.   Feiner) 
Griffiss AFB,   N. Y. 

RADC (Attn:   M.  Bickelhaupt) 
Griffiss AFB,   N. Y. 
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